The Selection of Neural Models of Non-linear Dynamical Systems by Statistical Tests

نویسندگان

  • D. URBANI
  • P. ROUSSEL-RAGOT
چکیده

A procedure for the selection of neural models of dynamical processes is presented. It uses statistical tests at various levels of model reduction, in order to provide optimal tradeoffs between accuracy and parsimony. The efficiency of the method is illustrated by the modeling of a highly non-linear NARX process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks

‎Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints‎. ‎In this paper‎, ‎to solve this problem‎, ‎we combine a discretization method and a neural network method‎. ‎By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem‎. ‎Then‎, ‎we use...

متن کامل

Testing for Stochastic Non- Linearity in the Rational Expectations Permanent Income Hypothesis

The Rational Expectations Permanent Income Hypothesis implies that consumption follows a martingale. However, most empirical tests have rejected the hypothesis. Those empirical tests are based on linear models. If the data generating process is non-linear, conventional tests may not assess some of the randomness properly. As a result, inference based on conventional tests of linear models can b...

متن کامل

In-silico prediction of Cellular Responses to Polymeric Biomaterials from Their Molecular Descriptors

In this work quantitative structure activity relationship (QSAR) methodology was applied for modeling and prediction of cellular response to polymers that have been designed for tissue engineering. After calculation and screening of molecular descriptors, linear and nonlinear models were developed by using multiple linear regressions (MLR) and artificial neural network (ANN) methods. The root m...

متن کامل

Stock Market Modeling Using Artificial Neural Network and Comparison with Classical Linear Models

Stock market plays an important role in the world economy. Stock market customers are interested in predicting the stock market general index price, since their income depends on this financial factor; Therefore, a reliable forecast in stock market can be extremely profitable for stockholders. Stock market prediction for financial markets has been one of the main challenges in forecasting finan...

متن کامل

A comparative QSAR study of aryl-substituted isobenzofuran-1(3H)-ones inhibitors

A comparative workflow, including linear and non-linear QSAR models, was carried out to evaluate the predictive accuracy of models and predict the inhibition activity of a series of aryl-substituted isobenzofuran-1(3H)-ones. The data set consisted of 34 compounds was classified into the training and test sets, randomly. Molecular descriptors were selected using the genetic algorithm (GA) as a f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993